LEAP includes the Impact Benefits Calculator (IBC). This extension to LEAP can be used to translate national-scale emissions scenarios into estimates of health (mortality), ecosystem (crop loss) and climate (temperature change) impacts. IBC is particularly useful for examining the multiple benefits of taking coordinated action on long-lived and short-lived climate pollutants (SLCPs) and local air pollutants.
LEAP includes an add-on module called the Impact Benefits Calculator (IBC). IBC can be used to translate LEAP's existing emissions scenarios into estimates of air pollution-associated health (premature mortality), and climate (global temperature change) impacts. The tool is particularly useful for examining multiple benefits of taking action on long-lived and short-lived climate pollutants (SLCPs) and local air pollutants.
IBC uses parameterized results from the global atmospheric geochemistry model GEOS-Chem Adjoint, which are combined with emission estimates to calculate population-weighted concentrations of fine particulate matter (PM2.5). These concentrations are then used with standard concentration-response functions to estimate premature mortality associated with PM2.5. Results can be viewed by geographic source (in-country, natural background and rest of the world), by the contribution of emissions of different pollutants to the impact (e.g. the contribution of NOx, black carbon, organic carbon, etc.), by age group (for premature mortality). Health impact functions are based on the standard dose-response functions used in the Global Burden of Disease Study (Burnett et al., 2014). GEOS-Chem Adjoint is a global 3-D chemical transport model for atmospheric composition driven by meteorological input from the Goddard Earth Observing System (GEOS) of NASA and is based on emissions inventories from the EDGAR database. The overall modeling pathway is illustrated below.
IBC runs are based on emissions inventories and projections developed in LEAP for a particular country. Users are required to specify comprehensive emissions inventories and forward-looking scenarios for all major long- and short-lived climate pollutants (SLCPs), and local air pollutants including CO2, methane (CH4), black carbon, organic carbon, PM2.5, non-methane volatile organic compounds (NMVOCs), nitrogen oxides (NOx), sulfur dioxide (SO2) and ammonia (NH3). SEI has developed a comprehensive set of default emission factors for these pollutants, which users can opt to add in to their existing data sets. This can be useful if a country has, for example, already developed a LEAP data set for its analysis of its Nationally Determined Contributions (NDCs). Alternatively, SEI has developed a template LEAP structure for performing these types of analysis (included in LEAP as the "Asiana" data set). This focuses on sectors that are important in terms of generating emissions of important SLCPs (such as emissions from brick kilns, diesel vehicles, traditional cook stoves or agricultural practices such as residue burning and methane from manure). Users can also opt to merge their existing data sets with parts of the standard template structure, to create a data set that meets the needs of their particular country. A sample version of the "Asiana", data set illustrates how LEAP can be used to examine alternative policies and measures that can mitigate both short- and long-lived climate pollutants, and reduce the health and ecosystem impacts associated with air pollution.
The national-scale emissions scenarios generated in LEAP are combined with estimates of emissions of pollutants for the rest of the world for the period 2010-2050, taken from the ECLIPSE scenarios developed by the International Institute for Applied Systems Analysis (IIASA). Two scenarios are included. A baseline scenario that foresees only minor worldwide efforts to combat air pollution, and a maximal effort scenario that reflects full implementation of 16 measures including the banning of agricultural residue burning. LEAP users can conduct sensitivity analyses to see the effect of differing levels of effort in the rest of the world on the impacts experienced in their own country.
IBC is particularly notable because, for the first time, it makes a complex and highly computing-intensive modeling methodology accessible to planners in the developing world. By first parameterizing the calculations of GEOS-Chem Adjoint (which can take a few days to perform per country, even on super computers), the calculations in LEAP can then be run in just a few seconds. Moreover, LEAP is used for all data management and results visualization, making it readily usable by developing country planners. Previously, such analyses could only be done by highly experienced modelers working in large international institutions.
Currently, LEAP-IBC works for a selected set of national-scale applications. It has so far been calibrated to work for 161 countries for PM2.5 impacts.
IBC has been developed in a collaboration between SEI, the US-EPA, and researchers at the University of Colorado (Daven Henze). The work has been supported by UNEP and the Climate and Clean Air Coalition (CCAC).
For more information on IBC, please refer to this open access paper:
Development of the Low Emissions Analysis Platform – Integrated Benefits Calculator (LEAP-IBC) tool to assess air quality and climate co-benefits: Application for Bangladesh. Environment International Vol 145. (December 2020). Authors: Johan C.I. Kuylenstierna, Charles G. Heaps, Tanvir Ahmed, Harry W. Vallack, Kevin Hicks, Mike R. Ashmore, Christopher S. Malley, Guozhong Wang, Elsa N. Lefèvre, Susan C. Anenberg, Forrest Lacey, Drew T. Shindell, Utpal Bhattacharjee, Daven K. Henze. https://doi.org/10.1016/j.envint.2020.106155
IBC was originally known as the Integrated Benefits Calculator. It is now known as the Impact Benefits Calculator.
Notes on using LEAP with IBC.
IBC can currently only be used with national-scale LEAP areas. Its impact calculations assume that LEAP will be providing it with a comprehensive accounting for the emissions of all major long- and short-lived climate pollutants (SLCPs), and local air pollutants including CO2, methane (CH4), black carbon, organic carbon, PM2.5, non-methane volatile organic compounds (NMVOCs), nitrogen oxides (NOx), sulfur dioxide (SO2) and ammonia (NH3). Your LEAP model should cover all anthropogenic emissions including both energy sector and non-energy sector emissions. IBC itself will provide estimates of anthropogenic emissions from the rest of the world as well as natural background levels of pollutants.
To ensure that your emissions scenarios comprehensively cover all these pollutants, we recommend starting by constructing a data set based on the Asiana area distributed with LEAP. You can open this area and then use the Area: Revert to Version menu option to select a version of this data set containing emission factors and blank activity and energy intensity data. We recommend using this as a basis for any new model you wish to construct. Alternatively, you can opt to extend an existing national-scale LEAP data set to fully include all of the above pollutants. For example, you may already have a LEAP data set developed for national mitigation modeling (perhaps developed to contribute to your countries analysis of its Nationally Determined Contributions to the UNFCCC). You may wish to copy the default emission factors provided with Asiana into your existing data set, supplementing them where appropriate with better nationally-relevant data. In addition, you may wish to copy some of the default sectoral structures provided with Asiana into your existing data set so as to ensure your model has comprehensive national-scale coverage of all of the above pollutants. In particular, bear in mind that many existing LEAP models may not have coverage of non-energy sector emissions.
IBC has so far been calibrated for 161 countries. You must select the appropriate country name in theSettings: Scope & Scale screen. If you select an unsupported country the calculation will halt without producing results.
IBC also requires certain specific Tree branches to exist under the Key Assumptions and Indicators high level branches. For example, under the Key Assumptions branch folders should exist labeled Demographics, Economics, Disease Rates, and Transport. Indicators must be enabled (via the Settings: Scope screen) and under the Indicator branch, IBC will store all of its various calculated results for pollutant concentrations, (premature) deaths, climate impacts and economic damages under a folder branch named Benefit Calculator Results. If these branches do not exist in your data set then IBC will fail to run.
Once your LEAP area has been properly set up to work with IBC, you can view additional types of results in LEAP including premature mortality (deaths), and temperature change. Results can be viewed by geographic source (in-country, natural background and rest of the world), by the contribution of emissions of different pollutants to the impact (e.g. the contribution of NOx, black carbon, organic carbon, etc.), by age group (for premature mortality). Below is an example of the type of result that can be generated.
Notes on some key uncertainties and limitations when using IBC within LEAP.
GEOS-Chem Adjoint coefficients for PM2.5: The GEOS-Chem Adjoint coefficients quantify the sensitivity of PM2.5 concentrations in the target country to NOx, SO2, NH3, BC and OC emissions in grid squares across the world. These sensitivities are calculated for a base set of emissions, for the year 2010. The coefficients are applied in IBC to look at changes in PM2.5 concentrations in the target country that result from changes in emissions in the target country, and across the world. They are linear coefficients, which means that a change in emissions results in a linear increase/decrease in PM2.5 concentrations in the target country. The methodology therefore does not account for non-linear changes in target PM2.5 concentrations resulting from non-linear chemical reactions in the atmosphere, e.g. combination between NOx, SO2 and NH3 to form secondary inorganic aerosol.
Health impact assessment methodology: The health impact assessment estimate premature mortality associated with PM2.5 exposures, using concentration-response functions that have been used by the Global Burden of Disease project. These concentration-response functions are based on health effects research that has been carried out in North America and Europe. It is assumed that the same relationships apply in other regions of the world, including those where PM2.5 concentrations are much higher, and where the composition of PM2.5 may differ.
Other: Significant but hard to quantity uncertainties exist in the activity levels, energy intensities and emission factors used in any LEAP area. Currently LEAP's calculations are deterministic and do not reflect any uncertainty in these values. However, you can use LEAP to perform sensitivity analyses or even connect it with tools such as Oracle Crystal Ball that allow uncertainties to be explored using techniques such as Monte Carlo analysis. Bear in mind also that all future values are inherently uncertain since they depend on policy choices that may or may not be made.
Updated: Sep 11, 2019
SEI is currently developing a new online technology database that will contain performance data, costs and emission factors suitable for use in LEAP-IBC. In the meantime, here are set of default emission factors stored in Excel worksheets that can be used when developing LEAP-IBC data sets.